The Enigma of Ai Khanum

Between 1964 and 1978 a French-led archeological expedition in Afghanistan unearthed a number of
artifacts from a Hellenic city in northern Afghanistan. The modern name of the site, Ai Khanoum “lady
moon” in Uzbek, was probably Alexandria on the Oxus River. Artifacts from this site are currently
(2009) making a museum tour of the United States (Washington, San Francisco, Houston New Y ork).
Among many interesting artifacts found in this eastern outpost of Hellenic culture, which was destroyed
around 150 BC, were two sundials carved from local limestone. One of them is an unremarkable scaphe
dial, typical of the Greek dials of the period. The second dial,
until its recent exposure by the exhibit, was not unknown but
languished in the obscurity of the Kabul national museum. It is
virtually unique in its design. One would have to look to modern
times to find anything similar. In his De Architectura, Vitruvius
enumerates 12 types of sundial, of which several have remained
unknown or speculative. One of these is the plinthium sive
lacunar dial said to have been invented by Scopus of Syracuse.
Plinthium is a squared block used for building. Sive means “or.”
Lacunar indicates hollowed or emptied out. It is very plausible,
although speculative, that this dial represents the only known
example of a plinthium sive lacunar dial. In any case, there are
no other candidates.

The dial in question (illustration) consists of a block of limestone 45 cm by 35 cm by 15 cm thick. Itis
bored through leaving a cylinder 22 cm in diameter. The gnomon was missing, but traces of it remained
in a socket at the top of the cylinder and its inverted T-shape can be inferred. The longer segment of the
T is suspended from the socket at the top of the bored cylinder, while the shadow casting element is
formed by the inverted T crossbar which coincides with the axis of the cylinder and is equal in length to
the thickness of the block. Although the shape of the missing gonomon was inferred by the analysis in
the archeological report, it is typical for dials of this period to be fitted with a rod-shaped gnomon whose
tip, rather than the shaft, told the hour. The base of the stone block is beveled at an angle of 53°, the co-
latitude of Ai Khanoum, situated at 37°, so that the block sits parallel to the equator and polar axis.

The dial has what clearly must be solstice lines inscribed at a distance of 48 mm from each face on the
lower half of the cylinder’s surface. On each face of the

block, the lower half of the cylinder is divided by 13 lines

with 15 degree separations marking the hours from s

sunrise to sunset. With the dial correctly aligned, at the Fauinox
equinox sun’s rays would just glance from the tip of the
gnomon onto the plane faces of the dial, marking out 12
equal hours from sunrise to sunset. The solstice lines are
precisely 48 millimeters from the planar faces of the dial.
This distance is where the gnomon tip’s shadow will fall
at the summer solstice, with sunlight shining on the upper
face, and winter solstice, with sunlight shining on the
lower face. This distance is a function of the 23.5
constant obliquity of the ecliptic and the radius of the
cylindrical bore. The 48 mm solstice lines on the dial North Horizon South




correspond to the 11 cm radius: 48/110 = Tan(23.5).

At first sight, this dial looks strikingly modern, even elegant. The sun’s shadow cast by the length of the
gnomon will trace out equal hours throughout the year while the gnomon tip will tell the season emerging
disappearing from the northern face at the Autumnal equinox and reentering from the southern face until
it reaches the winter solstice and reverses course. Not only that, but the dial would be accurate at any
latitude, only needing that the base angle be re-cut or wedged to restore its polar-equatorial orientation.
This dial is the only known example of its exact type from ancient times, and is quite rare in having a
polar-equatorial orientation, a design not prevalent until more than 1000 years later.

But to a casual observer something appears wrong. The hour lines, instead of being perpendicular to the
two faces as expected, are cut at an angle. The summer lines splay outward from the dial face toward the
interior, while the winter lines angle toward each other. On closer examination it becomes apparent that
the hour lines are meant to measure unequal hours: 12 long summer hours and 12 short winter hours. To
a modern observer, this is something of a surprise. The alignment and line-casting shape of the gnomon
tell equal hours so naturally and clearly that one can easily forget that in ancient times dials were
generally made to tell unequal hours, normally pointed by the shadow’s tip rather than by a shadow edge
coinciding with an inscribed line.

Since time was reckoned in unequal hours for real-life use there was no market, so to speak, for equal-
hour dials. The sun rose at 1 (the first hour) and set at 12, (the last hour) all year round. Unequal hours
were the real hours, and to be of any practical use, those were the hours that a dial must tell.

The design and functioning of this plinthium dial is easier to grasp if it is seen as variant of the more
common scaphe dial. The scaphe

dial is essentially a mirror projection

of a portion of the celestial sphere 3rd hour summer
(see illustration) onto a matching
bowl where the equinox, solstice and
hour division lines were indicated by
the shadow of a gnomon tip. The
plinthium dial is simply a projection
of a portion of the sphere onto a
corresponding cylinder. The
mechanical constraints of producing a useful shadow require that the cylinder be split into summer and
winter halves and reoriented so that the equinox lines face outwards.

3rd hour winter

How might the designer of the Ai Khanum dial have derived the layout for the lines inscribed on the
surface of the bored cylinder? A modern constructor could do this quite easily. At the equinox, the tip of
the gnomon, which is at the exact center of the cylindrical void casts a shadow parallel to the horizon at
sunrise and sunset, just grazing the rim on both surfaces, at exactly ¥ its circumference. Threfore, the
first and last hours (6 AM and 6 PM in modern terms) bisect the rim of the bore at both equinoxes. These
arcs simply need to be divided in 12 equal segments to tell time on those two dates. As measured, these
equinox arcs — both of which equal half the circumference of the hole, are 345 mm long. The next step
requires locating the distance from the two faces of the block to inscribe the arcs corresponding to the two
solstices on the inside of the cylinder. This distance, as noted above is a function of the 23.5 obliquity of
the obliquity of the ecliptic. It can be found by making a right triangle with a 23.5° acute angle
emanating from the gnomon’s tip. The adjacent side will be the diameter of the bore, the hypotenuse the



distance from the gnomon’s tip to the cylindrical surface, and the third, opposite, side of the triangle will
be the distance from the surface of the block to the solstice line. The same thing is done for both sides
with the triangles facing in opposite directions.

Obtaining the length of the two solstice arcs is more difficult. If the length of the day at summer and
winter solstice could be measured empirically, for example with a watch, the lengths of the arcs could be
calculated as a proportion between of the 12 hour equinox day, and the corresponding lines inscribed as a
proportion of the equinox line. This could theoretically be done by an observer at Ai Khanum, assuming
both possession of an independent timepiece and an unobstructed view of sunrise and sunset, but would
require a year’s wait and two clear days. More likely, a modern constructor would either use a published
reference to find day lengths, or more elegantly derive the measurements of the lines using trigonometry,
for example by the method cited by Luis Janin in his article on this dial published in 1978": The azimuth
of sunrise/sunset on a given date can be calculated with two values: latitude and declination of the sun on
the date with the formula cos A = - tan(latitude) * tan(declination). At the solstices the sun’s declination
will be £ 23.7 so at 37° latitude if we apply these values to the half-diameter of the dial, we obtain a
summer arc length of 420 mm and a winter arc length of 271 mm. We already know the offset toward the
midpoint of the cylindrical surface from the two faces of the block, so we will only need to measure 420
mm for the length of the summer solstice arc and 211 mm for the length of the winter solstice arc to
define them completely. These four arcs, consisting of the two rim half-diameters and the two solstice
arcs each just need to be marked off into 12 equal segments, and lines traced between them. This
description may be easier to follow by referring to the diagrams below where the lines have been unrolled
from the inside of the cylinder, so to speak, and drawn on a flat surface.

To compare the actual hour lines on the dial with the theoretical hour lines corresponding to the 37°
latitude, we need accurate measurements taken from the dial itself since it is difficult to obtain them from
a photograph. Fortunately such measurements exist and are available from the report of the archeological
delegation®. They were taken directly by laying moistened paper along the interior face of the dial and
tapping it with a stiff brush to pick up the impression from the stone. The paper was removed and laid
flat. The lines as measured this way and as calculated theoretically using the method described above,
are shown below. The drawing at the left shows the lines as calculated and the drawing at the right shows
the lines as measured. While the values are reasonably close for the equinoxes, they diverge substantially
for the solstices, and therefore produce very different hour lines.

Arc lengths: Equinoxes Summer Solstice Winter Solstice
Calculated: 345 420 271
Measured 342 382 300



< .

37
\ 37 A\G

[
/ /

/ k_f)r—
| —] ]
[ [ — —

12000
345.00 345.00
300.00 342.00

1 |71 342.00 382 00 R

| — |

—-1-\_

b | I
[

-_-\-1-\_“——_
| 4500 Ls.o a8 00— |18 00—

As Calculated As Measured

The solstice arcs and hour lines as measured are not correct for 37° where the dial was found, but would
be reasonably correct for a dial designed for a latitude of around 23°. Thus, the mystery: how is it
possible that a dial so elegantly constructed with an inclination that is virtually exact for the location it
was found at, and with inscribed solstice arcs cut at the correct distance from the rim of the cylinder
could be so far off in the calculation of the hour lines and the day lengths? And why the 23° latitude?
One possibility is that the dial was actually designed for a different location but moved and the base was
re-cut for its new home. If you follow the 23 degree latitude line across the globe south of Afghanistan
there are very few possibilities. Directly south is the Arabian Sea, to the southwest is the Arabian Desert,
the Red Sea and eventually the Nile basin where we find the Ancient Greek city Syene, near modern
Aswan, which Eratosthenes famously used in his calculation of the earth’s circumference. Toward the
Southeast we eventually find the Indian city of Ujjain. This has led to speculation that the dial may have
been designed for, or moved from one of those locations. 3

How plausible is it that the dial was really moved, designed or copied from a different location? It is hard
to justify this hypothesis. In the first place, as documented by the archeological report, the dial appears to
have been carved from the same type of limestone used for other sculptures found at Ai Khanum. The
idea that it was actually made for one of the only two known possible sites at 23 degrees and transported
several thousand miles is hard to credit. As evidenced by this and other dials, knowledge of gnomonics
was not so arcane as to justify the expense of shipping a block of heavy limestone several thousand stadia
and re-cut its angle of inclination.

Other hypotheses to explain the error, such as different gnomon alignment, or a different observation of
sunrise and sunset due to local terrain, all lead nowhere. It is hard to avoid the conclusion that while the
dial was carefully calculated and constructed for its location at Ai Khanum, the hour lines were simply an
error. But how could such a mistake have been made? And why 23°, a suspiciously familiar number,
close to the obliquity of the ecliptic?



At this point, we enter the realm of speculation, but it is possible to explain the error based on some
plausible assumptions about the technical methods available at the time which if correct would also shed
light on the methods that might have used for the dial’s design and construction.

First of all, the Hellenic gnomonist who designed the dial did not have available the tools we could drew
on for the theoretical calculation mentioned above. He obviously did not have a watch to observe the
times of sunrise or sunset. Trigonometry must be ruled out. The earliest known use of trigonometry was
a table compiled by Hipparchus of Nicea at roughly the same time that Ai Khanum was destroyed. A
complex trigonometric calculation such as the one cited above would be out of the question. The
unknown gnomonist did not have the luxury of a decimal number system. The units available for linear
measurement would only have been standardized locally, and at the time the dial was constructed he
probably did not have 360° system for measurement of angles, although he could have used the earlier
method based on fractions of a right angle. One assumes that the gnomonist was not the actual stone
carver, a profession requiring tools and skills quite different from mathematics. So once the theoretical
calculation had been carried out, there would have been the additional problem of transferring all the
dimensions correctly to the block of limestone without the sort of standardized objects we are familiar
with like millimeter graduated rulers, protractors, vernier calipers and so forth. Therefore, the designer
would have had to carry out the calculations somehow, or possibly transcribe them based on instructions
in a text, and hand them to the stone carver in some physical form such as drawings or templates so that
lines and dimensions could be laid out accurately on the limestone. A reconstructed replica of the dial
carried out by the writer suggests that the design itself could have been carried out using simple triangles
using straightforward calculations using nothing more abstruse than fractions, and the triangles handed to
the stone carver in the form of templates for him to use in laying out the correct measurements. We
would use paper or cardboard for this, but papyrus, wood, or thin sheets of lead or bronze could have been
used. There are three points in the construction of the dial where an angular measurement would have
been needed that could have been supplied by a right-triangle template: 1) the local latitude, measured by
what Vitruvius called the “equinoctial shadow” to cut the bottom of the dial 2) the invariant value of the
obliquity of the ecliptic to use for both the radius of the bore (“adjacent” side) and the offset of the two
solstice arcs from the planes (“opposite” side). 3) an angle to use for setting out the sunrise and sunset
lines, which would intersect the solstice arcs and determine their length.

The equinoctial shadow measurement needed to align the dial itself with the equator would have been
measured directly using the shadow cast at the equinox and transferred to a template. The second
triangular template needed lay out the center and diameter of the cylindrical bore and the offset of the two
solstice lines, is simply a right triangle with an acute angle of 23.5 degrees and adjacent side equal to the
dimension chosen for the bore. It is not impossible that this was derived using linear and angular units of
measurement, but it could have been expressed very easily using a ratio of the opposite and adjacent sides
of a right triangle. A convenient ratio approximating the obliquity of the ecliptic is 7/16. A triangle
defined by these two numbers is extremely easy to derive (double a value and then remove its eighth
part), and having been used to create a physical template is easy to transfer to the physical work. This
simple ratio produces triangle with an acute angle of 23.63 degrees which is actually closer to the
contemporaneous value of obliquity of the ecliptic in 150 BC than today’s value of 23.5.

For the third angle — the one needed to lay out the unequal lines — we have a
much simpler approach than the trigonometric calculation given above.
Imagine the location of the point on the inside of the cylinder at the
moment of sunrise. These points will clearly trace out a line that is
parallel to the horizon over the course of the year. This means that the
means that the same template used to produce the base-cut latitude could
have been used to project the first and last hour lines, which must lie
parallel to the base and parallel to the horizon, and in fact only two triangles would be required. One

Template
for
Latitude

Template
for
Solstice




triangle is used for the diameter of the bore and the offset of the solstices; the other to cut the base to the
correct proper latitude and to lay out the sunrise and sunset hour lines parallel to the base. With the first
and last hour lines laid out, their intersection with the solstice arcs will define the length of the solstice
days. At this point it is only necessary to be divide all four arcs into 12 segments and “connect the dots”
to obtain the 12 unequal hour lines.

The erroneous hour lines on this dial could be plausibly explained by the hypothesis that the the stone
carver — or perhaps the gnomonist himself — simply used the wrong triangular template. If we now run
the calculations backwards using the value of 7/16 in lieu of 23.5 degrees for the template and fine-tune
using a one millimeter adjustment of the radius, we obtain the following values, which are almost
identical to the as-measured values.

Equinox arc Summer arc Winter arc Solstice lines
As measured 342 382 300 48
Calculated (110 mm radius) 345.6 387.9 303.3 48.13
Calculated (109 mm radius) 342.4 384.4 300.4 47.69

How would such an obvious mistake go undetected? First of all, there is no reason to assume that it was
not. Maybe it was detected and ignored, or maybe this dial was replaced with a corrected one. Second,
the mistake would not have been as obvious as it seems. With no clocks available, it was impossible to
check the dial against an external fixed standard. The only time when the mistake could have been easily
verified against an external event would have been sunrise or sunset, when the shadow would not have
fallen on the correct line, but as it happens, the topology surrounding the gymnasium at Ai Khanum
leaves the location in shadow at both times. At any other time of the day, the dial would have indicated
an incorrect time but could only have been disputed by a simultaneous reading from another dial, such as
the scaphe dial found at the same site. If a discrepancy had been noticed one would have needed a third
independent reading to break the tie. The true explanation for the enigma of the Ai Khanum dial will
never be known for certain, but speculation based on the need for construction techniques to pass the
measurements from gnomonic theory to stone carver’s practice leads to back to a hypothesis that the
original calculation may have also been carried out using ratios and physical triangles.
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